By Topic

DC pre-breakdown phenomena and breakdown characteristics in the presence of conducting particles in liquid nitrogen

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hara, M. ; Dept. of Electr. & Electron. Syst. Eng., Kyushu Univ., Fukuoka, Japan ; Suehiro, J. ; Maeda, H. ; Nakashima, H.

DC pre-breakdown phenomena and breakdown characteristics in the presence of free conducting particles in liquid nitrogen are studied experimentally. The results show that a microdischarge occurs when a charged particle is approaching an oppositely charged electrode. An intense microdischarge can trigger a complete breakdown of the gap. The breakdown voltage of a uniform field gap with a free metallic particle of mm size might be reduced well below that of a point-to-plane gap without a particle in liquid nitrogen. Heavy contamination by a metallic powder produces a large reduction in the breakdown voltage with a horizontal spacer surface. However carbon powder is less hazardous compared to metallic powder

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:9 ,  Issue: 1 )