By Topic

Stability and controllability of a class of 2-D linear systems with dynamic boundary conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
E. Rogers ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; K. Galkowski ; A. Gramacki ; J. Gramacki
more authors

Discrete linear repetitive processes are a distinct class of two-dimensional (2-D) linear systems with applications in areas ranging from long-wall coal cutting through to iterative learning control schemes. The feature which makes them distinct from other classes of 2-D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them. In this paper a complete characterization of stability and so-called pass controllability (and several resulting features), essential building blocks for a rigorous systems theory, under a general set of initial, or boundary, conditions is developed. Finally, some significant new results on the problem of stabilization by choice of the pass state initial vector sequence are developed

Published in:

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications  (Volume:49 ,  Issue: 2 )