By Topic

Adaptive filtering of evoked potentials with radial-basis-function neural network prefilter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wei Qiu ; Auditory Res. Lab., State Univ. of New York, Plattsburgh, NY, USA ; Fung, K.S.A. ; Chan, F.H.Y. ; Lam, F.K.
more authors

Evoked potentials (EPs) are time-varying signals typically buried in relatively large background noise. To extract the EP more effectively from noise, we had previously developed an approach using an adaptive signal enhancer (ASE) (Chen et al., 1995). ASE requires a proper reference input signal for its optimal performance. Ensemble- and moving window-averages were formerly used with good results. In this paper, we present a new method to provide even more effective reference inputs for the ASE. Specifically, a Gaussian radial basis function neural network (RBFNN) was used to preprocess raw EP signals before serving as the reference input. Since the RBFNN has built-in nonlinear activation functions that enable it to closely fit any function mapping, the output of RBFNN can effectively track the signal variations of EP. Results confirmed the superior performance of ASE with RBFNN over the previous method.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 3 )