By Topic

Data mining for improving a cleaning process in the semiconductor industry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Braha, D. ; Center for Innovation in Product Dev., MIT, Cambridge, MA, USA ; Shmilovici, A.

As device geometry continues to shrink, micro-contaminants have an increasingly negative impact on yield. By diminishing the contamination problem, semiconductor manufacturers will significantly improve wafer yield. This paper presents a comprehensive and successful application of data mining methodologies to the refinement of a new dry cleaning technology that utilizes a laser beam for the removal of micro-contaminants. Experiments with three classification-based data mining methods (decision tree induction, neural networks, and composite classifiers) have been conducted. The composite classifier architecture has been shown to yield higher accuracy than the accuracy of each individual classifier on its own. The paper suggests that data mining methodologies may be particularly useful when data is scarce, and the various physical and chemical parameters that affect the process exhibit highly complex interactions. Another implication is that on-line monitoring of the cleaning process using data mining may be highly effective

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )