Cart (Loading....) | Create Account
Close category search window
 

A low-complexity combined antenna array and interference cancellation DS-CDMA receiver in multipath fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamed, N.A. ; CDMA Network Eng. Dept., Nortel Networks, Richardson, TX, USA ; Dunham, J.G.

A simple direct sequence-code division multiple access receiver that combines adaptive beamforming with parallel interference cancellation in a multipath fading channel is proposed and analyzed. A fast adaptation, conjugate gradient algorithm is used to find the optimum beamformer weights. By beamforming, the desired user's signal is enhanced and the cochannel interference from other directions is reduced. For in-beam multiple access interference reduction, a parallel interference canceller is used in each RAKE finger. In the demodulation process, we propose a new demodulation method in which the incoming signal is correlated with the effecting spreading code rather than the physical spreading code called the effective matched filter. A new combining method called equivalent maximal ratio combining is also proposed and analyzed. The average uncoded bit error rate as a function of the average antenna signal-to-noise ratio and the number of receiving antennas is examined in a frequency selective Rayleigh fading channel for all proposed receiver structures. Both simulation and analysis show an increase in system capacity as a function of the number of antennas and the number of interferers canceled per finger

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:20 ,  Issue: 2 )

Date of Publication:

Feb 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.