By Topic

Performance evaluation of a high-speed ATM switch with multiple common memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kang, S.H. ; Seoul Univ., South Korea ; Changhwan Oh ; Sung, D.K.

We consider a common-memory (CM) type N × N ATM switch, where CM block consists of K (K ⩾ N) separated submemories. We propose an address assignment algorithm to avoid input/output contentions so that we can have the read/write speed of submemories as low as the interface (input/output) port speed. Taking a replication-at-sending approach to multicast, we pursue memory efficiency and maximum throughput. We develop an analytical model to evaluate the system in terms of cell loss ratio and average delay time. In the analysis, we take into account two loss factors causing losses of incoming cells: (1) the failure of scheduling to avoid the input/output contentions and (2) overflow in the CM block. The first factor is dominating and can be significantly reduced by increasing K. From our analytical results compared with simulations, it is observed that we can take K ≈ 3N as a guide of system design

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 2 )