Cart (Loading....) | Create Account
Close category search window
 

Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Hsu Wang ; Sch. of Microelectron. Eng., Griffith Univ., Brisbane, Qld., Australia ; Han-Leih Liu ; Tsung-Chih Lin

In this paper, an observer-based direct adaptive fuzzy-neural network (FNN) controller with supervisory mode for a certain class of high order unknown nonlinear dynamical system is presented. The direct adaptive control (DAC) has the advantage of less design effort by not using FNN to model the plant. By using an observer-based output feedback control law and adaptive law, the free parameters of the adaptive FNN controller can be tuned on-line based on the Lyapunov synthesis approach. A supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be de-activated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results also show that our initial control effort is much less than those in previous works, while preserving the tracking performance

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Feb 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.