By Topic

Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Downie, J.D. ; Corning Inc. Sci. & Technol., NY, USA ; Tomkos, I. ; Antoniades, N. ; Boskovic, A.

We report computer simulation results of the effects on optical signal quality of passage through a cascade of wavelength division multiplexing (WDM) filters-multiplexers and demultiplexers-for directly modulated lasers with different chirp characteristics. In particular, lasers with transient or adiabatic chirp characteristics at 2.5 Gb/s and 10 Gb/s are investigated, and we find clear differences between the laser types with respect to filter concatenation effects. Filters with an optical bandwidth suitable for a 200-GHz channel-spacing system are considered, and we evaluate the system behavior as a function of laser frequency offset for a fixed number of filters. The reference network architecture used for the simulations is an optically transparent metropolitan scale network in which the WDM signals may be demultiplexed and then multiplexed again at multiple optical network elements. The signal quality is evaluated in terms of a distortion-induced eye-closure penalty as well as the excess attenuation or loss suffered. We find that transient chirp-dominated lasers show a generally symmetric distortion penalty response to laser frequency offset, whereas the response for adiabatic chirp dominated lasers is highly asymmetric. Furthermore, the extinction ratio for the latter class of lasers can be improved, in some cases, by the appropriate offset between laser and filter center frequencies.

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 2 )