By Topic

Beat interference penalty in optical duplex transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. K. Das ; Lucent Technol., Whippany, NJ, USA ; E. E. Harstead

The near- and far-end source spectra in optical full duplex systems can heterodyne, producing a high level of beat interference noise in the receiver bandwidth. This is called coherent common-channel crosstalk, the penalty from which is found in addition to that from incoherent near-end crosstalk (NEXT) quantified in an earlier publication. We find most directly modulated high-chirp laser systems, such as those using single-mode distributed feedback lasers or multimode Fabry-Perot (FP) lasers, are relatively immune to coherent NEXT for speeds up to 100 Mb/s. In the transform limit, however, which occurs at high bit rates or low chirp, the maximum allowable NEXT must be decreased by as much as 20 dB, compared to the incoherent case. One solution is to use uncooled single-mode lasers separated by a small wavelength spacing (20 nm, for example) as popularized for the coarse wavelength division multiplexing (WDM) grid

Published in:

Journal of Lightwave Technology  (Volume:20 ,  Issue: 2 )