By Topic

Optimizing the Gaussian excitation function in the finite difference time domain method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang-Seok Shin ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; R. Nevels

A systematic method is presented for determining the optimal pulsewidth and variance of a Gaussian excitation function in the finite difference time domain (FDTD) method. We highlight the interaction of several criteria, such as the stability condition, machine precision limits, the numerical grid cutoff frequency, and the dispersion relation, that play crucial roles in the design of the initial pulse. Optimal Gaussian pulse design is desirable if numerical dispersion, an inherent yet unavoidable property of the standard second-order FDTD Yee algorithm, is to be minimized. A method for determining the phase error of a Gaussian pulse is also presented

Published in:

IEEE Transactions on Education  (Volume:45 ,  Issue: 1 )