Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Neural networks for large- and small-signal modeling of MESFET/HEMT transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lazaro, M. ; DICOM, Cantabria Univ., Santander, Spain ; Santamaria, I. ; Pantaleon, C.

In this paper, we present a comparative study of three neural networks-based solutions for large- and small-signal modeling of MESFET and HEMT transistors. The first two neural architectures are specific for this modeling problem: the generalized radial basis function (GRBF) network, and the smoothed piecewise linear (SPWL) model. These models are compared with the well-known multilayer perceptron (MLP) network. Results are presented for both the large- and small-signal regimes separately. Finally, a global model is proposed that is able to accurately characterize the whole behavior of the transistors. This model is based on a simple combination of the best models obtained for the two kinds of regimes

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:50 ,  Issue: 6 )