Cart (Loading....) | Create Account
Close category search window
 

Rsim: simulating shared-memory multiprocessors with ILP processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hughes, C.J. ; Illinois Univ., Urbana, IL, USA ; Pai, V.S. ; Ranganathan, P. ; Adve, S.V.

The early 1990s saw several announcements of commercial shared-memory systems using processors that aggressively exploited instruction-level parallelism (ILP), including the MIPS R10000, Hewlett-Packard PA8000, and Intel Pentium Pro. These processors could potentially reduce memory read stalls by overlapping read latency with other operations, possibly changing the nature of performance bottlenecks in the system. The authors' experience with Rsim demonstrates that modeling ILP features is important even in shared-memory multiprocessor systems. In particular, current simple processor-based approximations cannot model significant performance effects for applications exhibiting parallel read misses. Further, recent shared-memory designs such as aggressive implementations of sequential consistency use the aggressive ILP-enhancing features of modern processors that simple processor-based simulators do not model. As microprocessor systems become more complex, the availability of shared infrastructure source code is likely to become increasingly crucial. The authors plan to release a new Rsim version shortly that will include instruction caches, TLBs, multimedia extensions, simultaneous multithreading, Rabbit fast simulation mode, and ports to Linux platforms

Published in:

Computer  (Volume:35 ,  Issue: 2 )

Date of Publication:

Feb 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.