By Topic

Recognizing handwritten digits using hierarchical products of experts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mayraz, G. ; Gatsby Computational Neurosci. Unit, Univ. Coll. London, UK ; Hinton, G.E.

The product of experts learning procedure can discover a set of stochastic binary features that constitute a nonlinear generative model of handwritten images of digits. The quality of generative models learned in this way can be assessed by learning a separate model for each class of digit and then comparing the unnormalized probabilities of test images under the 10 different class-specific models. To improve discriminative performance, a hierarchy of separate models can be learned, for each digit class. Each model in the hierarchy learns a layer of binary feature detectors that model the probability distribution of vectors of activity of feature detectors in the layer below. The models in the hierarchy are trained sequentially and each model uses a layer of binary feature detectors to learn a generative model of the patterns of feature activities in the preceding layer. After training, each layer of feature detectors produces a separate, unnormalized log probability score. With three layers of feature detectors for each of the 10 digit classes, a test image produces 30 scores which can be used as inputs to a supervised, logistic classification network that is trained on separate data

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 2 )