Cart (Loading....) | Create Account
Close category search window
 

Optical flow in log-mapped image plane - a new approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mohammed, Y. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA

Foveating vision sensors are important in both machine and biological vision. The term space-variant or foveating vision refers to sensor architectures based on smooth variation of resolution across the visual field, like that of the human visual system. Traditional image processing techniques do not hold when applied directly to such an image representation since the translation symmetry and the neighborhood structure in the spatial domain is broken by the space-variant properties of the sensor. Unfortunately, there has been little systematic development of image processing tools that are explicitly designed for foveated vision. The author proposes a novel approach to compute the optical flow directly on log-mapped images. We propose the use of a generalized dynamic image model (GDIM) based method for computing the optical flow as opposed to the brightness constancy model (BCM) based method. We introduce a new notion of "variable window" and use the space-variant form of gradient operator while computing the spatio-temporal gradient in log-mapped images for a better accuracy and to ensure that the local neighborhood is preserved. We emphasize that the proposed method must be numerically accurate, provide a consistent interpretation, and be capable of computing the peripheral motion. Experimental results on both the synthetic and real images have been presented to show the efficacy of the proposed method

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.