Cart (Loading....) | Create Account
Close category search window
 

The strain gradient effect in microelectromechanical systems (MEMS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhenyu Xue ; Dept. of Mech. & Ind. Eng., Illinois Univ., Urbana, IL, USA ; Saif, M.T.A. ; Yonggang Huang

Metallic materials display strong size effect when the characteristic length of deformation is of the order of microns. The theory of mechanism-based strain gradient (MSG) plasticity established from the Taylor dislocation model has captured this size dependence of material behavior at the micron scale very well. The strain gradient effect in microelectromechanical systems (MEMS) is investigated in this paper via the MSG plasticity theory since the typical size of MEMS is of the order of microns (comparable to the internal material length in MSG plasticity). Through an example of a digital micromirror device (DMD), it is shown that the strain gradient effect significantly increases the mechanical strain energy in the DMD, and reduces the rotation time of the micromirror. However, the strain gradient has no effect on the critical bias voltage governing the fast rotation of the micromirror

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 1 )

Date of Publication:

Feb 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.