By Topic

Effect of temperature cycling on joint strength of PbSn and AuSn solders in laser packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jao-Hwa Kuang ; Mech. Eng. Dept., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Maw-Tyan Sheen ; Chang, C.-F.H. ; Chai-Cheng Chen
more authors

The effect of temperature cycle testing on the joint strength of PbSn and AuSn solders in laser diode packages has been studied experimentally and numerically. Experimental results showed that the joint strength increased as the temperature cycle number increased initially, and then became steady after 400 cycles. The joint strengths of PbSn and AuSn solders increased about 40% to 20% after undergoing 500 temperature cycles, respectively. A finite-element method (FEM) analysis was performed on the calculation of joint strength variation of PbSn and AuSn solders in temperature cycling tests. The coupled thermal-elasticity-plasticity model was employed in the solidification and residual stresses calculation. Simulation results were in good agreement with the experimental measurements that the solder joint strength increased as the temperature cycle increased. Numerical results indicate that the increasing solder joint strength comes from the redistribution of the residual stresses within the solder during temperature cycling tests. The local yielding and the creep effects on the low melting temperature solders will make uniform the residual stresses distribution introduced in the solidification process and increasing the solder joint strength as the temperature cycle number increased. The result suggests that the FEM is an effective method for analyzing and predicting the solder joint strength in laser diode packages

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )