By Topic

High performance package designs for a 1 GHz microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Hasan ; Intel Corp., Chandler, AZ, USA ; A. Sarangi ; C. S. Baldwin ; R. L. Sankman
more authors

This paper describes the architecture and design of an organic land grid array (OLGA) and a flip chip pin grid array (FCPGA) package for a 32 b microprocessor with a clock frequency of 1 GHz and an I/O bus designed to run at 133 MHz. Cost and performance targets and compatibility with existing systems are the key accomplishments of this design project. Issues and implementation details of each of these aspects are discussed and contrasted here. This paper concentrates on the processor performance issues associated with the package routing and power delivery. To overcome high inductance associated with the socket and package pins in the FCPGA package, decoupling capacitors were placed on the underside of the package substrate. This paper discusses an optimal placement scheme for the capacitors and their effectiveness in performance improvement of the system compared to the OLGA package case

Published in:

IEEE Transactions on Advanced Packaging  (Volume:24 ,  Issue: 4 )