By Topic

Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurgy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Pittroff, W. ; Ferdinand-Braun-Inst. fur Hochsfrequenstech., Berlin, Germany ; Erbert, G. ; Beister, G. ; Bugge, F.
more authors

High power diode lasers have become more and more important to industrial and medical applications. In contrast to low power applications, long cavity lasers or laser bars are used in this field and mounting quality influences considerably laser performance and life time. In this paper we focus on the solder metallurgy and stress-induced laser behavior after mounting. The laser chips have been bonded fluxless epi-side down on translucent cubic boron nitride (T-cBN) using Au/Sn solder. The laser behavior has been tested with different chip metallizations preserving the eutectic solder composition or forming the Au rich ζ-phase during reflow. The resulting additional stress in the lasing region has been independently indicated by polarization measurements of the emitted light. A metallization scheme has been developed which forms the highly melting ζ-phase during soldering within a wide process window. This procedure yields better results then using eutectic Au/Sn which has a higher hardness than the ζ-phase. Laser diodes up to a cavity length of 2000 μm and an aperture of 200 μm have successfully been mounted on T-cBN. State of the art laser data, excellent thermal stability, high yield and reliability have been obtained

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:24 ,  Issue: 4 )