By Topic

Topological median filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Senel, H.G. ; Electr. Eng. Dept., Anadolu Univ., Eskisehir, Turkey ; Peters, R.A., II ; Dawant, B.

This paper describes the definition and testing of a new type of median filter for images. The topological median filter implements some existing ideas and some new ideas on fuzzy connectedness to improve, over a conventional median filter, the extraction of edges in noise. The concept of α-connectivity is defined and used to create an algorithm for computing the degree of connectedness of a pixel to all the other pixels in an arbitrary neighborhood. The resulting connectivity map of the neighborhood effectively disconnects peaks in the neighborhood that are separated from the center pixel by a valley in the brightness topology. The median of the connectivity map is an estimate of the median of the peak or plateau to which the center pixel belongs. Unlike the conventional median filter, the topological median is relatively unaffected by disconnected features in the neighborhood of the center pixel. Four topological median filters are defined. Qualitative and statistical analyses of the four filters are presented. It is demonstrated that edge detection can be more accurate on topologically median filtered images than on conventionally median filtered images

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 2 )