By Topic

Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Shifman ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Y. Leviatan

A novel method is presented to solve the two-dimensional (2-D) problem of scattering of an electromagnetic plane wave by a groove in a perfectly conducting infinite plane. In this method, the unknown induced current is expressed in terms of the known physical optics solution of the unperturbed problem of scattering by an infinite conducting plane plus a yet to be determined localized correction current placed in the vicinity of the groove. It is then shown that a good approximation of the induced current can be obtained using only a few dominant functions in the wavelet expansion of the correction current. Moreover, the same set of dominant wavelet functions serves the purpose of approximating the induced current at different angles of incidence. A numerical example demonstrates these various features of the proposed method of solution

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:49 ,  Issue: 12 )