By Topic

An adaptive analog noise-predictive decision-feedback equalizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Le, M.Q. ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA ; Hurst, P.J. ; Keane, J.P.

In this paper, an adaptive noise-predictive decision-feedback equalizer (NPDFE) is presented. The NPDFE architecture and its implementation are described. The NPDFE consists of an analog finite-impulse-response (FIR) forward equalizer, a recursive analog equalizer for noise prediction, and a decision-feedback equalizer (DFE). The recursive equalizer reduces noise enhancement and improves the signal-to-noise ratio (SNR) at the decision slicer input. The prototype targets a magnetic recording channel modeled by a Lorentzian impulse response. Measured results show that compared to a conventional DFE with FIR forward equalizer, the NPDFE achieves a SNR improvement of about 2 dB with PW50=2.5T. The NPDFE consumes 130 mW at a data rate of 100 Mb/s and occupies 1.3 mm2 of die area in a 0.5-μm CMOS process

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 2 )