Cart (Loading....) | Create Account
Close category search window
 

EMG-based measures of fatigue during a repetitive squat exercise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bonato, P. ; NeuroMuscular Res. Center, Boston Univ., MA, USA ; Heng, M.S.S. ; Gonzalez-Cueto, J. ; Leardini, A.
more authors

We have demonstrated a technique to calculate the EMG instantaneous median frequency to assess muscle fatigue during a dynamic exercise commonly prescribed in patients with ACL deficiency. We used Cohen-Posch time-frequency representations to improve upon the variability of the instantaneous median frequency estimates derived using Cohen Class transformations. The technique was applied to surface EMG data recorded from the quadriceps and hamstring muscles of a control subject and a patient with ACL deficiency during a repetitive squat exercise. Instantaneous median frequency values were derived for the knee-extension phases of the exercise. Ensemble average and standard deviation of the instantaneous median frequency were computed for the portion of the cycle associated with the lowest variability of the mechanics.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:20 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.