By Topic

Speed estimation of an induction motor drive using an optimized extended Kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shi, K.L. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kowloon, China ; Chan, T.F. ; Wong, Y.K. ; Ho, S.L.

This paper presents a novel method to achieve good performance of an extended Kalman filter (EKF) for speed estimation of an induction motor drive. A real-coded genetic algorithm (GA) is used to optimize the noise covariance and weight matrices of the EKF, thereby ensuring filter stability and accuracy in speed estimation. Simulation studies on a constant V/Hz controller and a field-oriented controller (FOC) under various operating conditions demonstrate the efficacy of the proposed method. The experimental system consists of a prototype digital-signal-processor-based FOC induction motor drive with hardware facilities for acquiring the speed, voltage, and current signals to a PC. Experiments comprising offline GA training and verification phases are presented to validate the performance of the optimized EKF

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:49 ,  Issue: 1 )