By Topic

Millimeter-wave FET modeling using on-wafer measurements and EM simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Cidronali ; Dept. of Electron. & Telecommun., Univ. of Firenze, Italy ; G. Collodi ; A. Santarelli ; G. Vannini
more authors

Electron device modeling is a challenging task at millimeter-wave frequencies. In particular, conventional approaches based on lumped equivalent circuits become inappropriate to describe complex distributed and coupling effects, which may strongly affect the transistor performance. In this paper, an empirical distributed FET model is adopted that can be identified on the basis of conventional S-parameter measurements and electromagnetic simulations of the device layout. The consistency of the proposed approach is confirmed by robust scaling properties, which enable millimeter-wave small-signal S-parameters to be predicted as a function of the device periphery and number of gate fingers. Moreover, it is shown how the model identified on the basis of standard S-parameter measurements up to 50 GHz can be efficiently exploited in order to obtain reasonably accurate small-signal prediction up to 110 GHz. Extensive experimental validation is presented for 0.2-μm pseudomorphic high electron-mobility transistors devices

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:50 ,  Issue: 2 )