By Topic

MGV: a system for visualizing massive multidigraphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abello, J. ; Shannon Labs., AT&T Labs-Research, Florham Park, NJ, USA ; Korn, J.

Describes MGV (Massive Graph Visualizer), an integrated visualization and exploration system for massive multidigraph navigation. It adheres to the visual information-seeking mantra: overview first, zoom and filter, then details on demand. MGV's only assumption is that the vertex set of the underlying digraph corresponds to the set of leaves of a pre-determined tree T. MGV builds an out-of-core graph hierarchy and provides mechanisms to plug in arbitrary visual representations for each graph hierarchy slice. Navigation from one level to another of the hierarchy corresponds to the implementation of a drill-down interface. In order to provide the user with navigation control and interactive response, MGV incorporates a number of visualization techniques like interactive pixel-oriented 2D and 3D maps, statistical displays, color maps, multi-linked views and a zoomable label-based interface. This makes the association of geographic information and graph data very natural. To automate the creation of the vertex set hierarchy for MGV, we use the notion of graph sketches. They can be thought of as visual indices that guide the navigation of a multigraph too large to fit on the available display. MGV follows the client-server paradigm and it is implemented in C and Java-3D. We highlight the main algorithmic and visualization techniques behind the tools and, along the way, point out several possible application scenarios. Our techniques are being applied to multigraphs defined on vertex sets with sizes ranging from 100 million to 250 million vertices

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:8 ,  Issue: 1 )