Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Information visualization and visual data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Keim, D.A. ; AT&T Shannon Res. Labs., Florham Park, NJ, USA

Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data is becoming increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques which have been developed over the last decade to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques which is based on the data type to be visualized, the visualization technique, and the interaction and distortion technique. We exemplify the classification using a few examples, most of them referring to techniques and systems presented in this special section

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:8 ,  Issue: 1 )