By Topic

Effective automated sneak circuit analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Price, C.J. ; FirstEarth Ltd., Aberystwyth, UK ; Hughes, N.

The automated sneak analysis software described in this paper works well on classic sneak examples. It correctly identifies sneak paths without falsely reporting on nonexistent sneaks. It has been tried out on much larger real-world examples, and reproduces the kind of behavior that it had demonstrated on the classic sneaks. Future development of the tool will enable the exploration of internal states of complex components such as ECUs. In addition of provision to complete a sneak analysis in the presence of failures will further enhance the tool. The use of simulation and identification of significant system operation has enabled this level of performance. The system is able to use qualitative simulation early in the design process, to identify potential sneaks as early as possible. It can use the industry-standard simulator Saber later in the design process, to give a more detailed analysis. In each case, component models are not specific to sneak circuit analysis, but can be used to verify the operation of the design, to generate a failure modes and effects analysis (FMEA) report, and to provide information useful for building diagnostic systems

Published in:

Reliability and Maintainability Symposium, 2002. Proceedings. Annual

Date of Conference: