By Topic

Influence of microphysical cloud parameterizations on microwave brightness temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Skofronick-Jackson, G.M. ; Univ. of Maryland, Baltimore, MD, USA ; Gasiewski, A.J. ; Wang, J.R.

The microphysical parameterization of clouds and rain cells plays a central role in atmospheric forward radiative transfer models used in calculating microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density, shape, and dielectric constant. This study investigates the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Calculated wideband (6-410 GHz) brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a rive-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that enlarging the raindrop size or adding water to the partly frozen hydrometeor mix warms brightness temperatures by as much as 55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture Experiment (CAMEX-3) brightness temperatures shows that in general all but two parameterizations produce calculated TBs that fall within the CAMEX-3 observed minima and maxima

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 1 )