Cart (Loading....) | Create Account
Close category search window

Interband calibration over clouds for POLDER space sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lafrance, B. ; Commun. & Syst.-Inf. Syst., Toulouse, France ; Hagolle, O. ; Bonnel, B. ; Fouquart, Y.
more authors

The Polarization and Directionality of the Earth's Reflectance (POLDER) spatial polarimeter was onboard the Advanced Earth Observation Satellite (ADEOS) satellite that flew from August 1996 to June 30, 1997. POLDER measured both multidirectional reflectance and polarization in visible and near-infrared spectral bands with a very wide field of view. An accurate absolute radiometric calibration is essential for the scientific exploitation of radiance measurements of the Earth. POLDER inflight radiometric calibration has been performed at the Centre National d'Etudes Spatiales (CNES), French National Space Studies Center, from measurements taken only on well-characterized targets. This paper presents the results of the POLDER in-flight radiometric interband calibration over clouds for channels 443 and 490 nm. The method is based on the comparison of measurements to simulations. Selected measurements correspond to observations over oceans for high, thick convective cumulonimbus and for low, thick stratocumulus. Simulations are calculated using the discrete ordinate computing method. An error budget considers the sensitivity of this calibration method to cloud microphysics, to cloud top altitude, and to aerosols and gaseous loading. Calibration results are discussed for different simulated cloud models

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.