By Topic

Progressive space frequency quantization for SAR data compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Gleich ; Fac. of Electr. Eng. & Comput. Sci., Maribor Univ., Slovenia ; P. Planinsic ; B. Gergic ; Z. Cucej

The authors propose a new wavelet image coding technique for synthetic aperture radar (SAR) data compression called a progressive space-frequency quantization (PSFQ). PSFQ performs spatial quantization via rate distortion-optimized zerotree pruning of wavelet coefficients that are coded using a progressive subband coding technique. They compared the performances of zerotree-based methods: EZW, SPIHT, SFQ, and PSFQ with the classical wavelet-based method (CWM), which uses uniform scalar quantization of subbands followed by recency rank coding. The performances of the methods based on zerotree quantization were better than the CWM in the rate distortion sense. The embedded coding techniques perform better SNR results than the methods using scalar quantization. However, the probability density function (PDF) of the reconstructed amplitude SAR data compressed using CWM, better corresponded to the PDF of the original data than the PDF of the reconstructed data compressed using the zerotree based methods. The amplitude PDF of the reconstructed data obtained using PSFQ compression algorithm better corresponded to the original PDF than the amplitude PDF of the data obtained using the multilook method

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 1 )