By Topic

ZnSTeSe metal-semiconductor-metal photodetectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chang, S.J. ; Inst. of Microelectron., Nat. Cheng Kung Univ., Tainan, Taiwan ; Su, Y.K. ; Chen, W.R. ; Chen, J.F.
more authors

High-quality quaternary ZnSTeSe epitaxial layers were successfully grown by molecular beam epitaxy (MBE). It was found that a ZnS/sub 0.18/Se/sub 0.82/ layer was automatically formed in between the ZnSe buffer layer, and the ZnS/sub 0.17/Te/sub 0.08/Se/sub 0.75/ epitaxial layer, when we increased the ZnS cell temperature. ZnSTeSe metal-semiconductor-metal (MSM) photodetectors were also fabricated for the first time. It was found that we could achieve a photocurrent to dark current contrast higher than five orders of magnitude by applying a 10-V reverse bias. We also found that the maximum photoresponsivity is about 0.4 A/W under a 10-V reverse bias. Such a value suggests that the ZnSTeSe MSM photodetector is potentially useful in the blue-UV spectral region.

Published in:

Photonics Technology Letters, IEEE  (Volume:14 ,  Issue: 2 )