By Topic

Measuring harmonic distortion and noise floor of an A/D converter using spectral averaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jenq, Y.-C. ; Tektronix Inc., Beaverton, OR, USA

The author proposes to use spectral averaging techniques to measure the harmonic distortion and noise floor of an analog/digital (A/D) digitizing subsystem. The noise floor of an ideal B-bit A/D converter is derived in closed form. It is shown that this noise floor is a function of the A/D resolution B, the record length N, and the equivalent noise bandwidth EB of the window function used in the discrete-Fourier-transform (DFT) computation. For an example, the noise floor is given for the case in which the magnitude square of the spectrum is averaged. Both experimental and simulation results are presented and it is shown that they are in good agreement with the theoretical results

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:37 ,  Issue: 4 )