By Topic

Principal component analysis for errors-in-variables subspace identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin Wang ; Dept. of Chem. Eng., Texas Univ., Austin, TX, USA ; Qin, S.J.

This paper develops a new subspace identification algorithm using the principal component analysis (PCA) that gives consistent model estimates under the errors-in-variables (EIV) situation. PCA naturally falls into the category of EIV formulation, which resembles total least squares and allows for errors in both process input and output. We propose to use PCA to determine the A, B, C, and D matrices and the system order for an EIV formulation. Standard PCA is modified with instrumental variables in order to achieve consistent estimates of the system matrices. The proposed subspace identification method is demonstrated using one simulated processes and a real industrial process for model identification and order determination

Published in:

Decision and Control, 2001. Proceedings of the 40th IEEE Conference on  (Volume:4 )

Date of Conference: