By Topic

A high-speed intersubband modulator based on quantum interference in double quantum wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Janes, P. ; Dept. of Microelectron. & Inf. Technol., R. Inst. of Technol., Kista, Sweden ; Holmstrom, P. ; Ekenberg, U.

Calculations on a modulator based on quantum interference in AlGaAs/GaAs asymmetric double quantum wells (QWs) are performed. The modulation of the absorption is based on the anti-crossing behavior of the two lowest states in the coupled wells. At anti-crossing, the oscillator strengths of the transitions from these two lowest states to a higher state are changed in opposite directions. The width of the barrier between the wells should be thick enough to allow a large change in oscillator strength with applied field, yet thin enough so that the absorption peaks of the transitions are resolved. The QWs are designed so that one absorption peak has only a small energy shift for the transition used for modulation while the absorption varies rapidly with the applied voltage. A complete structure including a surface plasmon waveguide is proposed enabling calculations of modal absorption. Parameters important for the performance of the modulator are then determined. An extinction ratio of 10 dB at a wavelength of 8.4 μm is predicted for a device length of 18 μm and a peak-to-peak voltage of 0.9 V. The resistance-capacitance-limited 3-dB bandwidth is 130 GHz. The predicted performance compares very favorably with present interband modulators based on the quantum-confined Stark effect

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 2 )