By Topic

Toward the development of miniaturized imaging systems for detection of pre-cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Descour, M.R. ; Dept. of Aerosp. & Mech. Eng., Arizona Univ., Tucson, AZ, USA ; Karkkainen, A.H.O. ; Rogers, J.D. ; Chen Liang
more authors

In this paper, we describe the progress toward the development of miniaturized imaging systems with applications in medical imaging, and specifically, detection of pre-cancer. The focus of the article is a miniature, optical-sectioning, fluorescence microscope. The miniature microscope is constructed from lithographically printed optics and assembled using a bulk micro-machined silicon microoptical table. Optical elements have been printed in a negative tone hybrid glass to a maximum depth of 59 μm and an rms surface roughness between 10-45 nm, fulfilling the requirements of the miniature microscope. Test optical elements have been assembled using silicon-spring equipped mounting slots. The design of silicon springs is presented in this paper. Optical elements can be assembled within the tolerances of an NA=0.4 miniature microscope objective, confirming the concept of simple, zero-alignment assembly

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 2 )