By Topic

Understanding the process window for printing lead-free solder pastes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nguty, T.A. ; Sch. of Aeronautical, Mech. & Manuf. Eng., Salford Univ., UK ; Salam, B. ; Durairaj, R. ; Ekere, N.N.

Solder paste is primarily used as a bonding medium for surface mount assemblies (SMA) in the electronics industry, and is typically deposited using the stencil printing process. Stencil printing is a very important and critical stage in the reflow soldering of surface mount devices, and a high proportion of all SMA defects are related to this process. This is likely to continue with the drive toward the introduction of lead-free solder pastes. Work is continuing on the metallurgical properties of these lead-free solders, including solder joint strength and material compatibility. However, the initial challenge for the new Pb-free formulations is in achieving repeatable solder deposit from print to print and from pad to pad. To meet this challenge, new flux formulations are being developed. For a smooth transition to Pb-free soldering formulations, a proper understanding of the solder paste printing performance is necessary. The key parameters that affect solder paste printing have been identified and are the subject of numerous studies. In lead-free solder paste, the replacement of lead with other elements (including Bi, Cu) changes the density of this dense suspension. In this paper, we investigate the effects of printer parameters, i.e. squeegee speed and pressure (defined as the process window) on the printing performance of a variety of lead-free solder pastes. A three-level design of experiment on these factors was used. Comparisons are presented with lead-rich solder pastes. The metal content of the lead-free solders had a significant effect on the process window

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:24 ,  Issue: 4 )