By Topic

Anomaly detection in embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maxion, R.A. ; Dept. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Tan, K.M.C.

By employing fault tolerance, embedded systems can withstand both intentional and unintentional faults. Many fault tolerance mechanisms are invoked only after a fault has been detected by whatever fault-detection mechanism is used; hence, the process of fault detection must itself be dependable if the system is expected to be fault-tolerant. Many faults are detectable only indirectly as a result of performance disorders that manifest as anomalies in monitored system or sensor data. Anomaly detection, therefore, is often the primary means of providing early indications of faults. As with any other kind of detector, one seeks full coverage of the detection space with the anomaly detector being used. Even if coverage of a particular anomaly detector falls short of 100%, detectors can be composed to effect broader coverage, once their respective sweet spots and blind regions are known. This paper provides a framework and a fault-injection methodology for mapping an anomaly detector's effective operating space and shows that two detectors, each designed to detect the same phenomenon, may not perform similarly, even when the event to be detected is unequivocally anomalous and should be detected by either detector. Both synthetic and real-world data are used

Published in:

Computers, IEEE Transactions on  (Volume:51 ,  Issue: 2 )