By Topic

Uncertainty representation using fuzzy measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. R. Yager ; Machine Intelligence Inst., Iona Coll., New Rochelle, NY, USA

We introduce the fuzzy measure and discuss its use as a unifying structure for modeling knowledge about an uncertain variable. We show that a large class of well-established types of uncertainty representations can be modeled within this framework. A view of the Dempster-Shafer (D-S) belief structure as an uncertainty representation corresponding to a set of possible fuzzy measures is discussed. A methodology for generating this set of fuzzy measures from a belief structure is described. A measure of entropy associated with a fuzzy measure is introduced and its manifestation for different fuzzy measures is described. The problem of uncertain decision making for the case in which the uncertainty represented by a fuzzy measure is considered. The Choquet integral is introduced as providing a generalization of the expected value to this environment

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:32 ,  Issue: 1 )