By Topic

A robust compensation strategy for extraneous acoustic variations in spontaneous speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiang, Hui ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont., Canada ; Li Deng

We propose a robust compensation strategy to deal effectively with extraneous acoustic variations for spontaneous speech recognition. This strategy extends speaker adaptive training, and uses hidden Markov models (HMM) parameter transformations to normalize the extraneous variations in the training data according to a set of predefined conditions. A "compact" model and the associated prior probability density functions (PDFs) of transformation parameters are estimated using the maximum likelihood criterion. In the testing phase, the generic model and the prior PDFs are used to search for the unknown word sequence based on Bayesian prediction classification (BPC). The proposed strategy is evaluated in the switchboard task, and is used to deal with three types of extraneous variations and mismatch in conversational speech recognition: pronunciation variations, inter-speaker variability, and telephone handset mismatch. Experimental results show that moderate word error rate reduction is achieved in comparison with a well-trained baseline HMM system under identical experimental conditions

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:10 ,  Issue: 1 )