By Topic

Limits on interconnection network performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Agarwal, A. ; Lab. for Comput. Sci., MIT, Cambridge, MA, USA

The latency of direct networks is modeled, taking into account both switch and wire delays. A simple closed-form expression for contention in buffered, direct networks is derived and found to agree closely with simulations. The model includes the effects of packet size and communication locality. Network analysis under various constraints and under different workload parameters reveals that performance is highly sensitive to these constraints and workloads. A two-dimensional network is shown to have the lowest latency only when switch delays and network contention are ignored; three- or four-dimensional networks are favored otherwise. If communication locality exists, two-dimensional networks regain their advantage. Communication locality decreases both the base network latency and the network bandwidth requirements of applications. It is shown that a much larger fraction of the resulting performance improvement arises from the reduction in bandwidth requirements than from the decrease in latency

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:2 ,  Issue: 4 )