By Topic

Real-time implementation of an optimization scheme for seven-degree-of-freedom redundant manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dubey, R.V. ; Dept. of Mech. & Aerosp. Eng., Tennessee Univ., Knoxville, TN, USA ; Euler, J.A. ; Babcock, S.M.

A computationally efficient kinematic optimal control scheme for seven-degree-of-freedom (7-DOF) manipulators is presented. This scheme uses the gradient projection optimization method in the framework of resolved motion rate control and does not require calculation of the pseudoinverse of the Jacobian. An efficient formulation for determining joint velocities for given Cartesian components of linear and angular end-effector velocities is obtained. This control scheme is well suited for real-time implementation, which is essential if the end-effector trajectory is continuously modified based on sensory feedback. Implementation of this scheme on a Motorola 6820 VME bus-based controller of the 7-DOF manipulator is described. A comparison of computational complexity with previously available schemes is presented

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:7 ,  Issue: 5 )