By Topic

A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zigang Yang ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Xiaodong Wang

We consider the application of the sequential Monte Carlo (SMC) methodology to the problem of blind symbol detection in a wireless orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective fading channel. Bayesian inference of the unknown data symbols in the presence of an unknown multipath fading channel is made only from the observations over one OFDM symbol duration. A novel blind SMC detector built on the techniques of importance sampling and resampling is developed for differentially encoded OFDM systems. The performance of different schemes of delayed-weight estimation methods is studied. Furthermore, being soft-input and soft-output in nature, the proposed SMC detector is employed as the first-stage demodulator in a turbo receiver for a coded OFDM system. Such a turbo receiver successively improves the receiver performance by iteratively exchanging the so-called extrinsic information with the maximum a posteriori (MAP) outer channel decoder. Finally, the performance of the proposed sequential Monte Carlo receiver is demonstrated through computer simulations

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 2 )