Cart (Loading....) | Create Account
Close category search window
 

MCMC for joint noise reduction and missing data treatment in degraded video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kokaram, A.C. ; Dept. of Electr. Eng., Trinity Coll., Dublin, Ireland ; Godsill, S.J.

Image sequence restoration has been steadily gaining importance with the increasing prevalence of visual digital media. Automated treatment of archived video material typically involves dealing with replacement noise in the form of "blotches" that have varying intensity levels and "grain" noise. In the case of replacement noise, the problem is essentially one of missing data that must be detected and then reconstructed based on surrounding spatio-temporal information, whereas the additive noise can be treated as a noise-reduction problem. It is typical to treat these problems as separate issues; however, it is clear that the presence of noise has an effect on the ability to detect missing data and vice versa. This paper therefore introduces a fully Bayesian specification for the problem that allows an algorithm to be designed that acknowledges and exploits the influences from each of the subprocesses, causing the observed degradation. Markov chain Monte Carlo (MCMC) methodology is applied to the joint detection and removal of both replacement and additive noise components. It can be seen that many of the previous processes presented for noise reduction and missing data treatment are special cases of the framework presented here

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 2 )

Date of Publication:

Feb 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.