By Topic

InGaAs/InGaAlAs MQW lasers with InGaAsP guiding layers grown by gas source molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Kawamura ; NTT Opto-Electron. Lab., Kanagawa, Japan ; A. Wakatsuki ; Y. Noguchi ; H. Iwamura

An InGaAs/InGaAlAs multiple-quantum-well (MQW) laser was grown by gas source molecular beam epitaxy (GS-MBE). The laser has InP cladding layers and InGaAsP guiding layers, and the active layer is composed of an InGaAs/InGaAlAs MQW layer. Electrons are injected into the MQW active layer by tunneling through the barriers. The threshold current of the InGaAs/InAlAs buried-heterostructure (BH)-MQW lasers was as low as 9.6 mA. The relaxation oscillation frequency of the InGaAs/InAlAs MQW lasers was found to be larger than that of the InGaAs/InGaAsP MQW lasers with the same structure.<>

Published in:

IEEE Photonics Technology Letters  (Volume:3 ,  Issue: 11 )