Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

1.55 mu m gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
B. Borchert ; Siemens AG, Munich, Germany ; K. David ; B. Stegmuller ; R. Gessner
more authors

The fabrication and characteristics of gain-coupled 1.55- mu m GaInAlAs quantum-well metal-clad ridge-waveguide distributed-feedback lasers are discussed. The gain-coupling mechanism was provided by a thin ternary loss grating layer with an estimated gain-coupling strength of about 30/cm. For as-cleaved devices, the single-mode yield was as high as 70 and 95% for 600- and 800- mu m-long devices, respectively. Typical threshold currents were 40 and 55 mA, respectively. Both the high single-mode yield and the pronounced asymmetric spectra were calculated theoretically and give a strong indication that a significant amount of gain coupling was realized in the laser structure. For a 600- mu m-long device, a continuous-wave (CW) output power of 10 mW and a minimum linewidth of 1.6 MHz were measured.<>

Published in:

IEEE Photonics Technology Letters  (Volume:3 ,  Issue: 11 )