Cart (Loading....) | Create Account
Close category search window
 

Hidden Markov models with spectral features for 2D shape recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinhai Cai ; Sch. of Comput. Sci. & Software Eng., Queensland Univ. of Technol., Brisbane, Qld., Australia ; Zhi-Qiang Liu

We present a technique using Markov models with spectral features for recognizing 2D shapes. We analyze the properties of Fourier spectral features derived from closed contours of 2D shapes and use these features for 2D pattern recognition. We develop algorithms for reestimating parameters of hidden Markov models. To demonstrate the effectiveness of our models, we have tested our methods on two image databases: hand-tools and unconstrained handwritten numerals. We are able to achieve high recognition rates of 99.4 percent and 96.7 percent without rejection on these two sets of image data, respectively

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 12 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.