By Topic

Color invariance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. -M. Geusebroek ; Dept. of Comput. Sci., Amsterdam Univ., Netherlands ; R. van den Boomgaard ; A. W. M. Smeulders ; H. Geerts

This paper presents the measurement of colored object reflectance, under different, general assumptions regarding the imaging conditions. We exploit the Gaussian scale-space paradigm for color images to define a framework for the robust measurement of object reflectance from color images. Object reflectance is derived from a physical reflectance model based on the Kubelka-Munk theory for colorant layers. Illumination and geometrical invariant properties are derived from the reflectance model. Invariance and discriminative power of the color invariants is experimentally investigated, showing the invariants to be successful in discounting shadow, illumination, highlights, and noise. Extensive experiments show the different invariants to be highly discriminative, while maintaining invariance properties. The presented framework for color measurement is well-founded in the physics of color as well as in measurement science. Hence, the proposed invariants are considered more adequate for the measurement of invariant color features than existing methods

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:23 ,  Issue: 12 )