By Topic

A general backpropagation algorithm for feedforward neural networks learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinghuo Yu ; Fac. of Informatics & Commun., Central Queensland Univ., Rockhampton, Qld., Australia ; Efe, M.O. ; Kaynak, O.

A general backpropagation algorithm is proposed for feedforward neural network learning with time varying inputs. The Lyapunov function approach is used to rigorously analyze the convergence of weights, with the use of the algorithm, toward minima of the error function. Sufficient conditions to guarantee the convergence of weights for time varying inputs are derived. It is shown that most commonly used backpropagation learning algorithms are special cases of the developed general algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 1 )