By Topic

ViSOM - a novel method for multivariate data projection and structure visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hujun Yin ; Dept. of Electr. Eng. & Electron., Univ. of Manchester Inst. of Sci. & Technol., UK

When used for visualization of high-dimensional data, the self-organizing map (SOM) requires a coloring scheme, such as the U-matrix, to mark the distances between neurons. Even so, the structures of the data clusters may not be apparent and their shapes are often distorted. In this paper, a visualization-induced SOM (ViSOM) is proposed to overcome these shortcomings. The algorithm constrains and regularizes the inter-neuron distance with a parameter that controls the resolution of the map. The mapping preserves the inter-point distances of the input data on the map as well as the topology. It produces a graded mesh in the data space such that the distances between mapped data points on the map resemble those in the original space, like in the Sammon mapping. However, unlike the Sammon mapping, the ViSOM can accommodate both training data and new arrivals and is much simpler in computational complexity. Several experimental results and comparisons with other methods are presented

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 1 )