By Topic

Comparison of 3-D haptic peg-in-hole tasks in real and virtual environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Unger, B.J. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Nicolaidis, A. ; Berkelman, P.J. ; Thompson, A.
more authors

We describe an experimental arrangement for comparison of user performance during a real and a virtual 3D peg-in-hole task. Tasks are performed using a unique six-degree-of-freedom (6-DOF) magnetic levitation haptic device. The arrangement allows a user to exert and experience real and virtual forces using the same 6-DOF device. During the virtual task, a peg and hole are rendered haptically, and visual feedback is provided through a graphical display. During the real task, a physical peg is attached to the underside of the haptic device. Using only real forces/torques, the peg is inserted into a hole in a plate attached to a force/torque sensor, while positions/orientations are measured by the haptic device. positions/orientations and forces/torques are recorded for both modes. Preliminary results indicate increased task time, larger total forces and more failures occur with the virtual task. Recorded data reveal user strategies that are similar for both tasks. Quantitative analysis of the strategies employed should lead to identification of significant factors in haptic interface design and haptic rendering techniques

Published in:

Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on  (Volume:3 )

Date of Conference:

2001